МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный аграрный университет имени Н.И. Вавилова»

«» 2013 г. «» 2 РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Дисциплина ТЕПЛОТЕХНИКА Направление подготовки 10800.62 Агроинженерия Профиль подготовки Технический сервис в агропромышленном комплексе Квалификация (степень) Бакалавр выпускника Нормативный срок обучения Очная Общая трудоемкость дисциплины, ЗЕТ 4	рситет										
Заведующий кафедрой	i	Α/									
				<u>«</u>			грушк	_2013			
П КАРОЗАЧ	РОГРА	MMA	ДИС	ципл	ІИНЫ	І (МОД	(ЯЛУ))			
Дисциплина ТЕПЛОТЕХНИКА											
	110800.	62 Aı	гроина	женер	пи						
подготовки	технический сервис в агропромышленном комплексе										
(степень)	Бакала	вр									
Нормативный срок	4 года										
	Очная										
	Всего					1					
	4	1	2	3	4		6	7	8		
	144					144					
Аудиторная работа — всего, в т.ч.:	72					72					
лекции	18					18					
лабораторные	36					36					
практические	18					18					
Самостоятельная работа	72				1	72					

Разработчик: доцент, Брюнина О.Г.

3

X

Количество рубежных

контролей Форма итогового

контроля

Курсовой проект

(подпись)

3

экз.

Саратов 2013

1.Цель и задачи дисциплины

Целью дисциплины «Теплотехника» является формирование знаний и практических навыков по получению, преобразованию, передаче и использовании тепловой энергии, а также правильный выбор и эксплуатация теплотехнического оборудования с максимальной экономией теплоэнергетических ресурсов и материалов, интенсификация технологических процессов.

2. Место дисциплине в структуре ООП ВПО

В соответствии с учебным планом по направлению подготовки 110800.62 «Технический сервис в агропромышленном комплексе» дисциплина «Теплотехника» относится к базовой части профессионального цикла.

Дисциплина базируется на знаниях, полученных после изучения физики, гидравлики, химии, инженерной графики.

Для качественного усвоения дисциплины студент должен:

Знать: основные газовые законы, режим движения жидкости и газов, а также понятие теплоты, теплоемкости, энергии, работы, мощности, их физический смысл и размерность.

Уметь: пользоваться персональным компьютером и графическими программами.

Дисциплина является базовой для изучения следующих дисциплин: «Организация и управление на предприятиях АПК», «Тракторы и автомобили», «Машины и оборудование в животноводстве», «Основы проектирования процессов и технических средств в АПК», «Управление качеством и технологическими процессами на предприятиях АПК», «Автоматизация технологических процессов в техническом сервисе», «Ресурсосберегающие технологии технического сервиса».

3. Компетенции обучающегося, формируемые в процессе изучения дисциплины

Дисциплина «Теплотехника» направлена на формирование у студентов профессиональных компетенций: «Способность решать инженерные задачи с использованием основных законов механики, электротехники, гидравлики, термодинамики и тепломассообмена; знание устройства и правил эксплуатации гидравлических машин и теплотехнического оборудования.

В результате освоения дисциплины студент должен:

- *знать:* основные законы преобразования энергии, законы термодинамики и тепломассообмена; термодинамические процессы и циклы; основные свойства рабочих тел, применяемых в отрасли; принцип действия и устройства теплообменных аппаратов, теплосиловых установок и других теплотехнологических устройств, применяемых в отрасли; основные

способы энергосбережения; связь теплоэнергетических установок с проблемой защиты окружающей среды.

- уметь: подбирать теплотехническое оборудование для конкретных эффективно технологических процессов, эксплуатировать теплоиспользующее оборудование, теплогенерирующее владеть И инженерными методами рационального использования традиционных и нетрадиционных источников энергии, обеспечить энергосберегающую квалифицированно решать технологию в сельском хозяйстве, вопросы экологии.
- обеспечивающими владеть: современными методами, получение эффективных разработок, отвечающих требованиям проектных средствами перспективного отрасли; объективной оценки развития возможных положительных и отрицательных социальных, экономических, экологических И технических последствий принимаемых решений; навыками проведения квалифицированных расчетов элементов теплоэнергетического качественного оборудования, оформления И технических решений на чертежах.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа, из них аудиторных – 72 ч., самостоятельная работа –72 часа.

Структура и содержание дисциплины

Таблица 1

№ п/п	Тема занятия Содержание	местра		удиторна работа		Само стоя тельная работа	я Контроль знан ная		наний
	Содоржини	Неделя семестра	Вид занятия	Форма проведения	Количество часов	Количество	Вид	Форма	Мах балл
1	2	3	4	5	6	7	8	9	10
			5 семес						
1	Вводная лекция. Содержание и задачи курса. Краткая история развития «Теплотехники». Основные понятия термодинамических систем. Параметры и уравнение состояния. Функции состояния и процесса. Газовые смеси. 1-ый и 2-ой законы термодинамики.	1	Л	В	2	2	ВК	ПО	7,2
2	Определение воздуха. теплоемкости Изучение материала. теоретического	1	ЛЗ	T	2	2	ТК	УО	

1	2	3	4	5	6	7	8	9	10
3	Определение теплоемкости	2	ЛЗ	T	2	2	ТК	УО	
	воздуха								
	Выполнение эксперимента.	2	ПО	T.	2	2	TDI.C	110	
4	Теплоемкость Романия зачан на таниа западати	2	П3	T	2	2	TK	УО	
5	Решение задач по теплоемкости	3	Л	В	2	2	TK	КЛ	
3	Термодинамические процессы Термодинамические процессы	3	J1	Б	2	2	1 IX	NJ1	
	идеального газа и водяного пара,								
	их анализ и расчет.								
6	Термодинамические процессы	3	ПЗ	T	2	2	ТК	УО	
	идеального газа.								
	Решение задач по термодинамич.								
	процессам ид. газа	4	по	T	2	2	TIC	ПО	
7	Термодинамические процессы	4	П3	T	2	2	TK	ПО	
	водяного пара. Решение задач по определению								
	параметров водяного пара.								
8	Термодинамические процессы	4	ПЗ	Т	2	2	TK	ПО	
	водяного пара.	•		•	-	_	110	-110	
	Решение задач по ТДП водяного								
	пара						1		
9	Влажный воздух. Процессы	5	Л	T	2	2		КЛ	
	поршневых компрессоров.								
	Определение параметров								
	влажного воздуха, расчет основных процессов: нагревания,								
	сушки, смешения.								
10	Испытание поршневого	5	ЛЗ	Т	2	2	РК	ПО	14,4
10	компрессора								,
	Изучение теоретической части								
	работы				_				
11	Испытание поршневого	6	ЛЗ	T	2	2	TK	УО	
	компрессора Выполнение экспериментальной								
	части работы								
12	Влажный воздух	6	ПЗ	Т	2	2	TK	УО	
	Решение задач по влажному								
	воздуху								
	Термодинамика потока.	7	Л	В	2	2		КЛ	
	Истечение и дросселирование								
13	газов и паров. Определение								
	скорости и расхода газа при истечении из сопла.								
14	Термодинамика потока	7	ПЗ	Т	2	2	ТК	УО	
17	Решение задач по термодинамике	,		•	-	_			
	потока				<u> </u>				
15	Определение расхода воздуха	8	ЛЗ	T	2	2	TK	УО	
	Изучение теоретической части								
1.0	работы	0	пр	Tr.	2		TOTA	1/0	
16	Определение расхода воздуха	8	ЛЗ	T	2		TK	УО	
	Выполнение экспериментальной части работы								
17	циклы тепловых машин:	9	Л	В	2	2		КЛ	
1 /	прямой цикл Карно, циклы ДВС,		71			_		101	
	циклы паросиловых установок и								
	способы повышения								
	эффективности их работы.								
18	Поршневые компрессоры	9	ПЗ	T	2	2	TK	УО	
	Решение задач по поршневым								
	компрессорам						1		1

1	2	3	4	5	6	7	8	9	10
19	Двигатели внутреннего	10	П3	Т	2	2	TK	УО	
	сгорания								
20	Решение задач по циклам ДВС. Паросиловые установки	10	ПЗ	T	2	2	ТК	УО	
20	Решение задач по ПСУ.	10	115	1	2	2	110	30	
21	Циклы холодильных машин:	11	Л	В	2	2	TK	УО	
	обратный цикл Карно, циклы								
	воздушной, парокомпрессионной абсорбционной, пароэжекторной								
	холодильных машин, теплового								
	насоса и вихревой трубы.								
22	Испытание холодильной	11	ЛЗ	T	2	2	TK	УО	
	машины Изумания тааратууулагай наатуу								
	Изучение теоретической части работы и диаграмм фреонов.								
23	Испытание холодильной	12	ЛЗ	Т	2	2	TK	УО	
	машины								
	Выполнение экспериментальной части работы.								
24	Решение задач по холодильным	12	ЛЗ	T	2	2	РК	ПО	14,4
	машинам								
	Расчет цикла холодильной								
25	машины. Теория тепломассообмена	13	Л	В	2	2		КЛ	
23	Основные понятия и	13	71		2	2		101	
	определения. Способы переноса								
	теплоты. Теплопроводность. Конвективный теплообмен.								
	Закон Ньютона-Рихмана.								
	Теплообмен при изменении								
	агрегатного состояния вещества.								
26	Теплообмен излучением. Определение теплопроводности	13	ЛЗ	T	2	2	ТК	УО	
20	Изучение теоретической части	13	113	1	2	2	1 K	yO	
	работы.								
27	Определение теплопроводности	14	ЛЗ	T	2	2	TK	УО	
	Выполнение экспериментальной части работы.								
28	Теплопроводность	14	ЛЗ	Т	2	2	TK	УО	
	Расчет теплопроводности.								
29	Теплопередача и расчет	15	Л	В	2	2		КЛ	
	теплообменных аппаратов . Пути интенсификации процесса								
	теплопередачи.Выбор материала								
	тепловой изоляции. Основы								
30	массообмена. Определение коэффициента	15	ЛЗ	T	2	2	ТК	УО	
30	теплоотдачи вертикальной	13	113	1	2	2	1 IX	30	
	стенки								
	Изучение теоретической части								
31	работы Спределение коэффициента	16	ЛЗ	T	2	2	ТК	УО	
31	теплоотдачи вертикальной	10		•		~			
	стенки								
	Выполнение экспериментальной части работы.								
32	Теплоотдача	16	ЛЗ	Т	2	2	TK	УО	
	Решение задач по теплоотдаче							-	
	при свободной и вынужденной								
<u></u>	конвекции.								

1	2	3	4	5	6	7	8	9	10
33	Промышленная теплотехника. Топливо, основы горения. Назначение и виды ТГУ. Котельные установки. Тепловой баланс котельного агрегата. Определение часового и годового расхода топлива. Обеспечение надежности и экономичности работы котельной Системы отопления и вентиляции. Расчетные температуры внутреннего и наружного воздуха. Тепловой баланс помещений. Расчет и подбор отопительных приборов.	17	Л	В	2	2		КЛ	
34	Определение коэффициента теплопередачи Изучение теоретической части работы.	17	ЛЗ	Т	2	2	ТК	УО	
35	Определение коэффициента теплопередачи Выполнение экспериментальной части работы.	18	ЛЗ	Т	2	2	ТК	УО	
36	Теплопередача Решение задач по теплопередаче.	18	ЛЗ	Т	2	2	РК	ПО	14,4
37	Выходной контроль						Э		21,6
	Итого за семестр				72	72			72

Примечание:

Условные обозначения:

Виды аудиторной работы: Π – лекция, Π 3 – лабораторное занятие, Π 3 – практическое занятие, Γ 5 – семинарское занятие.

Формы проведения занятий: B — лекция-визуализация, Π — проблемная лекция/занятие, ΠK — лекция-пресс-конференция (занятие пресс-конференция), B — бинарная лекция, D — лекция/занятие, проводимое в традиционной форме, D — моделирование, D — деловая игра, D0 — круглый стол, D1 — мозговой штурм, D3 — метод кейсов.

Виды контроля: ВК – входной контроль, ТК – текущий контроль, РК – рубежный контроль, ТР – творческий рейтинг, ВыхК – выходной контроль.

Форма контроля: УО – устный опрос, ΠO – письменный опрос, T – тестирование, $K \Pi$ – конспект лекции, P – реферат, 3P – защита курсовой работы, 3Π – защита курсового проекта, 3 – экзамен, 3 – зачет.

5. Образовательные технологии

Для успешной реализации образовательного процесса по дисциплине «Теплотехника» и повышения его эффективности используются как традиционные педагогические технологии, так и методы активного обучения: лекция-визуализация, лабораторные работы профессиональной направленности.

Удельный вес занятий, проводимых с использованием активных и интерактивных методов обучения, в целом по дисциплине составляет 25 % аудиторных занятий (в $\Phi\Gamma$ OC не менее 20 %).

6. Оценочные средства для проведения входного, рубежного и выходного контролей

Вопросы входного контроля

- 1. Что называется идеальным газом?
- 2. Что называется реальным газом?
- 3. Назовите приборы, которыми можно измерить параметры состояния.
- 4. Что такое избыточное и абсолютное давление?
- 5. Какое давление измеряют: манометром, барометром, вакуумметром?
- 6. Чему равен 1 мм водяного столба в паскалях?
- 7. Физическая сущность закона Шарля.
- 8. Что такое нормальные физические условия?
- 9. Напишите аналитическое уравнение состояния идеального газа.
- 10. Что такое газовая постоянная и универсальная газовая постоянная, какова их размерность?
- 11. Что такое температура?
- 12. Что такое теплота?
- 13. Что называется энергией?
- 14. Что называется мощностью?
- 15. Что такое работа газа?
- 16. Что называется плотностью вещества?
- 17. Что такое удельный объем?

Вопросы рубежного контроля №1

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Функции процесса (определение, расчетные формулы).
- 2. Функции состояния (определение, расчетные формулы).
- 3. Изобразите изобарный ТДП идеального газа в P-V, T-S диаграммах, приведите формулы для расчета q, l, Δu .
- 4. Изобразите изотермический ТДП водяного пара в P-V, T-S, H-S диаграммах, приведите формулы для расчета q, l, Δu .
- 5. Изобразите изобарный ТДП водяного пара в P-V, T-S, H-S диаграммах, приведите формулы для расчета q, l, Δu .
- 6. Изобразите изохорный ТДП водяного пара в P-V, T-S, H-S диаграммах, приведите формулы для расчета q, l, Δu .
- 7. Изобразите и опишите процесс парообразования в P-V, T-S координатах.
- 8. Термодинамика потока, приведите уравнение неразрывности потока и первого закона термодинамики для потока.

- 9. Сопло, режимы истечения газа из сопла и их связь с его формой.
- 10. Дросселирование, дифференциальный эффект Джоуля-Томсона.
- 11. Влажный воздух, основные характеристики.
- 12. Изобразите процесс нагрева влажного воздуха в калорифере на *h-d* диаграмме, приведите формулу для расчета теплоты, необходимой для нагрева воздуха.
- 13. Изобразите процесс сушки влажного воздуха на h-d диаграмме, приведите формулу для расчета количества влаги, уносимой из сушильной камеры.
- 14. Изобразите процесс смешения влажного воздуха на h-d диаграмме, объясните каким образом можно найти на ней положение точки, соответствующей полученной смеси.
- 15. Назначение компрессора, приведите и опишите *P-V* диаграмму идеального поршневого компрессора, какой процесс сжатия в компрессоре наиболее выгоден (политропный, изотермический, адиабатный) и почему?
- 16. Приведите и опишите P-V диаграмму реального поршневого компрессора, перечислите ее отличия от идеальной диаграммы.
- 17. Многоступенчатый компрессор, его преимущества перед одноступенчатым, схема, анализ в P –V координатах.

Вопросы для самостоятельного изучения

- 1.Применение эксергетического метода исследования к изучению термодинамической эффективности процессов теплоэнергетической установки.
- 2. Дифференциальные уравнения термодинамики.
- 3. Применение эксергии в необратимых процессах течения.

Вопросы рубежного контроля №2

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Прямой цикл Карно, его анализ в P-V, T-S координатах, второй закон термодинамики применительно к тепловым машинам.
- 2. Обратный цикл Карно, его анализ в P-V, T-S координатах, второй закон термодинамики применительно к холодильным машинам.
- 3. ПСУ, работающая по циклу Ренкина, назначение, схема установки, анализ в P-V, T-S координатах, η_t , способы повышения эффективности ее работы.
- 4. ПСУ, работающая по циклу Ренкина с перегретым паром, назначение, схема установки, анализ в P-V, T-S координатах, η_t .
- 5. ТЭЦ, назначение, анализ в T-S координатах, коэффициент использования теплоты.
- 6. Цикл газотурбинной установки (ГТУ) с изобарным подводом теплоты, схема и принцип работы установки, анализ в P-V,T-S координатах, η_t .

- 7. Цикл парогазовой установки, назначение, схема установки и принцип работы.
- 8. Цикл Дизеля (анализ в *P-V*, *T-S* диаграммах, η_t , ℓ_u).
- 9. Цикл Отто (анализ в P-V, T-S диаграммах, η_t , ℓ_u).
- 10. Цикл Сабатэ-Тринклера (анализ в *P-V*, *T-S* диаграммах, η_t , ℓ_u).
- 11. Способы сравнения циклов ДВС, приведите один из способов.
- 12. Трансформаторы теплоты, назначение и классификация.
- 13. Цикл воздушной холодильной машины, назначение, схема установки, принцип работы, анализ в P-V,T-S координатах, ε_t .
- 14. Цикл парокомпрессионной холодильной машины, схема установки, принцип работы, анализ в ℓgP -h, T-S координатах, ε_t .
- 15. Цикл пароэжекторной холодильной машины, схема установки, принцип работы, ε .
- 16. Цикл абсорбционной холодильной машины, схема установки, принцип работы, ε .
- 17. Тепловой насос, назначение, схема установки, принцип работы, чем оценивается эффективность работы?

Вопросы для самостоятельного изучения

- 1. Цикл с МГД-генератором.
- 2. Вихревой теплогенератор.
- 3. Хладагенты и их свойства.

Вопросы рубежного контроля №3

Вопросы, рассматриваемые на аудиторных занятиях

- 1. Физическая сущность процесса теплопроводности, закон Фурье.
- 2.Сформулируйте физическую сущность закона Ньютона-Рихмана. Напишите аналитическое выражение, проанализируйте составляющие.
- 3. Перечислите основные виды теплообмена, их физическая сущность.
- 4. Приведите критерии подобия для конвективного теплообмена и их расчетные формулы.
- 5. Объясните физическую сущность процесса теплопередачи и приведите формулы для расчета теплового потока и коэффициента теплопередачи для однослойной плоской стенки.
- 6. Теплообмен излучением, физическая сущность, закон Стефана-Больцмана.
- 7. Назначение теплообменных аппаратов, их виды, уравнение баланса теплоты.
- 8. Как изменяется температура теплоносителей при противоточной схеме движения теплоносителей?
- 9. Теплообмен при кипении жидкости, виды режимов кипения, приведите график зависимости теплового потока и коэффициента теплоотдачи от температурного напора?
- 10. Массообмен, физическая сущность, виды массообмена.

- 11.Сформулируйте физическую сущность закона Фика. Напишите аналитическое выражение. Проанализируйте составляющие.
- 12. Каким образом определяют толщину тепловой изоляции?
- 13. Покажите последовательность расчета и основные расчетные формулы для расчета теплового потока при свободной конвекции.
- 14. Теплообмен при конденсации пара.
- 15. Особенности лучистого теплообмена в газах.
- 16. Газообразное топливо (состав, характеристика, процесс горения газообразного топлива).
- 17. Жидкое топливо (состав, характеристика, процесс горения жидкого топлива).
- 18. Топки (назначение, классификация, принцип работы).
- 19. Назовите основные виды твердого и жидкого топлива. Какие элементы входят в состав твердого и жидкого топлива?
- 20. Назовите типы горелок для жидкого и газообразного топлива? Изобразите их.
- 21. Что такое котельная установка, каковы ее составные части?
- 22. Запишите тепловой баланс парового котла, выражение для подсчета КПД котла брутто.

Вопросы для самостоятельного изучения

- 1.Сушка продуктов сельскохозяйственного производства.
- 2. Альтернативные источники теплоты.
- 3. Развитие конструкций котельных агрегатов.
- 4. Основы энергосбережения.
- 5. Охрана окружающей среды.

Вопросы выходного контроля (экзамен)

- 1. При каких условиях протекает изобарный термодинамический процесс водяного пара? Изобразите его в P-V, T-S, H-S координатах. Приведите формулы для расчета: ℓ , Δu , q.
- 2. Приведите основные функции процесса, охарактеризуйте их.
- 3. Приведите основные функции состояния, охарактеризуйте их.
- 4. Основные характеристики влажного воздуха
- 5. Изобразите процесс сушки влажного воздуха на h-d диаграмме, приведите формулу для расчета количества влаги, уносимой из сушильной камеры.
- 6. Изобразите процесс смешения влажного воздуха на h-d диаграмме, каким образом определяют параметры смеси?
- 7. Первый закон термодинамики для потока.
- 8. Цикл Отто.
- 9. Цикл Дизеля
- 10. Цикл Сабатэ-Тринклера.
- 11. ТЭЦ, назначение, анализ в Т-S координатах, коэффициент использования теплоты.

- 12. Многоступенчатый компрессор, его преимущества перед одноступенчатым.
- 13. Газовые смеси, способы задания газовых смесей, R_{cm} , c_{cm} .
- 14. При каких условиях протекает изотермический термодинамический процесс водяного пара? Изобразите его в P-V, T-S, H-S координатах. Приведите формулы для расчета: ℓ , Δu , q.
- 15. При каких условиях протекает изотермический термодинамический процесс идеального газа? Изобразите его в P-V, T-S координатах. Приведите формулы для расчета: ℓ , Δu , q.
- 16. При каких условиях протекает изобарный термодинамический процесс идеального газа? Изобразите его в P-V, T-S координатах. Приведите формулы для расчета: ℓ , Δu , q.
- 17. Приведите H-S диаграмму водяного пара. Покажите, как ею пользоваться.
- 18.Сопло, первый закон термодинамики применительно к соплам, режимы истечения газа из сопла и их связь с его формой.
- 19. Эффект Джоуля-Томсона, дифференциальный дроссельный эффект, температура инверсии.
- 20. Обратный цикл Карно, его анализ в P-V,T-S координатах, второй закон термодинамики применительно к холодильным машинам.
- 21. Прямой цикл Карно, его анализ в P-V,T-S координатах, второй закон термодинамики применительно к тепловым машинам
- 22.ПСУ, работающая по циклу Ренкина с перегретым паром, назначение, схема установки, анализ в P-V,T-S координатах, η_t .
- $23.\Pi C Y$, работающая по циклу Ренкина, назначение, схема установки, анализ в P-V,T-S координатах, η_t .
- 24. Цикл воздушной холодильной машины, назначение, схема установки, принцип работы, анализ в P-V,T-S координатах, ε_t .
- 25. Цикл парокомпрессионной холодильной машины, схема установки, принцип работы, анализ в $\ell gP-h$, T-S координатах, ϵ_t .
- 26. Цикл пароэжекторной холодильной машины, схема установки, принцип работы, є.
- 27. Цикл абсорбционной холодильной машины, схема установки, принцип работы, є.
- 28. Тепловой насос, назначение, схема установки, принцип работы, чем оценивается эффективность работы?
- 29. Сформулируйте физическую сущность закона Ньютона-Рихмана. Напишите аналитическое выражение, проанализируйте составляющие.
- 30. Сформулируйте физическую сущность закона Фурье. Напишите аналитическое выражение, Проанализируйте составляющие.
- 31. Объясните физическую сущность процесса теплопередачи и приведите формулу для теплового потока.
- 32. Теплообмен излучением, физическая сущность, закон Стефана-Больцмана.
- 33. Назначение теплообменных аппаратов, их виды, уравнение баланса теплоты.

- 34. Как изменяется температура теплоносителей при противоточной схеме движения теплоносителей?
- 35. Теплообмен при кипении жидкости, виды режимов кипения, какой режим наиболее эффективный и почему?
- 36. Приведите критерии подобия для конвективного теплообмена и формулы для их расчета.
- 37. Назначение компрессора, приведите и опишите P-V диаграмму идеального поршневого компрессора, какой процесс сжатия в компрессоре наиболее выгоден (политропный, адиабатный, изотермический) и почему?
- 38. Как изменяется температура теплоносителей при прямоточной схеме движения теплоносителей?
- 39. Теплообмен при конденсации пара.
- 40.Особенности излучения газов.
- 41. Теплообмен, виды теплообмена, их физическая сущность
- 42. Теплотехнические характеристики топлива.
- 43. Газообразное топливо (состав, характеристика, процесс горения газообразного топлива).
- 44. Назовите основные виды твердого и жидкого топлива. Какие элементы входят в состав твердого и жидкого топлива?
- 45. Жидкое топливо (состав, характеристика, процесс горения жидкого топлива).
- 46. Назовите основные виды твердого и жидкого топлива. Какие элементы входят в состав твердого и жидкого топлива?
- 47. Что такое котельная установка, каковы ее составные части?
- 48. Запишите тепловой баланс парового котла, выражение для подсчета КПД котла брутто.

Темы рефератов

- 1. Производство тепловой энергии при помощи геотермальных установок.
- 2. Производство тепловой энергии из с/х отходов.
- 3. Современные направления котлостроения в России.

Темы расчетно-графических работ

- 1. Расчет термодинамических процессов идеального газа.
- 2. Расчет термодинамических процессов водяного пара.
- 3. Теплотехнический расчет теоретических циклов автотракторных двигателей.

7. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература

- 1. **Амерханов, Р.А.** Теплотехника [Текст]: учебник для вузов /Р.А. Амерханов, Б.Х. Драганов Изд. 2-е перераб и доп.- М.: Энергоатомиздат, 2006. 432 с.- 1000 экз. ISBN 5-283-03245-0
- 2. **Кирюшатов, А.И.** Техническая термодинамика [Текст]: практикум по изучению дисциплины «Техническая термодинамика» / А.И. Кирюшатов, О.Г. Брюнина. Саратов: ФГОУ ВПО «Саратовский ГАУ», 2008.-144 с.-50 экз.- ISBN 978-5-7011-0577-3

б) дополнительная

- 1.**Баскаков, А.П.** Теплотехника [Текст] : учебник для вузов /А.П. Баскаков [и др.]; под ред. А.П. Баскакова. 2 изд. перераб. М.: Энергоиздат, 1991. 224 с.-60000 экз. ISBN 5-283-00121-0
- 2. **Бурцев, С.И.** Влажный воздух. Состав и свойства [Электронный ресурс] : учебное пособие. СПб: СПбТАХПТ, 1998. 146 с.-750 экз.- ISBN 5-89565-005-8
- 3. Драганов, Б.Х. Теплотехника и применение теплоты в сельском хозяйстве [Текст]: учеб. пособие / Б.Х. Драганов, А.В. Кузнецов, С.П. Рудопашта; под ред. д.т.н., проф. Б.Х. Драганова. М.: Агропромиздат, 1990 463 с.- 19000 экз. ISBN 5-10-000759-1
- **2. Злобин, В.Г.** Техническая термодинамика. Часть 1. Основные законы термодинамики. Циклы тепловых двигателей [Электронный ресурс]: учебное пособие / В.Г.Злобин, С.В. Горбай, Т.Ю. Короткова.- СПб: СПб ГТУРП-2011-149 с. -150 экз.
- 4.**Злобин, В.Г.** Техническая термодинамика. Часть 2. Водяной пар. Циклы теплосиловых установок [Электронный ресурс]: учебное пособие / В.Г.Злобин, С.В. Горбай, Т.Ю. Короткова.- СПб: СПб ГТУРП, 2011-149 с.- 150 экз.
- 5. **Кирюшатов, А.И.** Теплотехника [Текст]: практикум по изучению дисциплины «Теплотехника» /А.И. Кирюшатов, В.А. Стрельников,
- О.Г. Брюнина// ФГОУ ВПО «Саратовский ГАУ».- Саратов, 2010.- 184 с.
- 6. **Кирюшатов**, **А.И.** Термодинамические процессы в тепловых машинах [Текст]: методические указания и задания к выполнению расчетнографических работ для слушателей курса повышения квалификации /
- А.И. Кирюшатов, В.А. Стрельников., В.Е. Сидоров// Φ ГОУ ВПО «Саратовский ГАУ».- Саратов, 2011.- 44 с.
- 7. **Кудинов, В.А.** Техническая термодинамика [Текст]: учебное пособие для вузов /В.А. Кудинов, Э.М. Карташов. 3-е изд. испр. М.: Высш. шк., 2003. 261 с.- 4000 экз.- ISBN 5-06-004344-4
- 8.**Луканин, П.В.** Технологические энергоносители предприятий (низкотемпературные энергоносители) [Электронное издание]: учебное пособие /П.В. Луканин –изд.2-е перераб. и доп. СПб: ГОУ ВПО СПбГТУРП, 2009 116 с.-200 экз.- ISBN 5-230-14392-4
- **9. Ривкин, С.Л.** Термодинамические свойства воды и водяного пара [Электронное издание]: Справочник рек. Гос. Службой стандартных

справочных данных. / С. Л. Ривкин, А.А. Александров. изд. 2-е доп. и перераб. - М.: Энергоатомиздат,1975.-80 с.- 29000 экз.

- 10. Стрельников, В.А. Теплотехнический расчет теоретических циклов автотракторных двигателей [Текст]: методические указания к выполнению расчетно-графических работ по дисциплине «Теплотехника» для слушателей курса повышения квалификации /В.А. Стрельников, В.Е. Сидоров /ФГОУ ВПО «Саратовский ГАУ». Саратов, 2009. 24 с.
- 11. Фокин, В.М. Основы энергосбережения в вопросах теплоснабжения [Электронное издание]: монография / В.М. Фокин, Г.П. Бойков,
- Ю.Ц. Видин.- М.: «Издательство Машиностроение 1», 2005 192 с.-400 экз. ISBN 5-94275-178-1
- в) базы данных, информационно-справочные и поисковые системы, Агропоиск, полнотекстовая база данных иностранных журналов Doal, поисковые системы Rambler, Yandex, Google:
 - Электронная библиотека СГАУ http://library.sgau.ru
 - Информационная система по энергетике www.energetiki.net
 - Портал по малой энергетике www.cogeneration.ru
 - Информационная система по теплоснабжению www.rosteplo.ru
 - Единое окно доступа к образовательным ресурсам

8. Материально-техническое обеспечение дисциплины

Для проведения занятия используется следующее материальнотехническое обеспечение:

- учебные плакаты по термодинамическим свойствам рабочих тел;
 - комплект мультимедийного оборудования,
- лабораторные приборы И оборудование: амперметры, ЛАТРы, вольтметры, термометры, расходометры, манометры, поршневой калориметр, барометры, компрессор, холодильная машина, механический индикатор, автотрансформатор, электродвигатели, теплообменники.

Программа составлена в соответствии с требованиями ФГОС ВПО с учетом рекомендаций и ПрООп ВПО по направлению подготовки 110800.62 Агроинженерия.